Mathematical Derviations

Rodoni Davide
June 8, 2022

Figure 1: Sketch of the geometry problem.

1 Vibrations

The geometrical problem is easiest to solve when put in the following form, by first solving it for $\mathbf{q}(t)$:

$$
\begin{align*}
(\mathbf{q}-\mathbf{p})^{2} & =\ell^{2} \tag{1}\\
(\mathbf{q}-\mathbf{m})^{2} & =a^{2} \tag{2}
\end{align*}
$$

The first step is to let

$$
\begin{equation*}
\mathbf{q}=\mathbf{p}+\alpha \mathbf{u}+\beta \mathbf{v} \tag{3}
\end{equation*}
$$

where $\alpha, \beta \in \mathbb{R}$ and \mathbf{u}, \mathbf{v} are defined to be orthogonal to each other in the following manner:

$$
\mathbf{u}=\mathbf{m}-\mathbf{p}, \quad \mathbf{v}=\mathbf{u}^{\perp}=\left(u_{2},-u_{1}\right)^{t} .
$$

Then, (3) is substituted into (1) resulting in

$$
\begin{aligned}
\ell^{2} & =(\mathbf{p}+\alpha \mathbf{u}+\beta \mathbf{v}-\mathbf{p})^{2} \\
& =(\alpha \mathbf{u}+\beta \mathbf{v})^{2} \\
& =\left(\alpha^{2} u^{2}+2 \alpha \beta \mathbf{u} \cdot \mathbf{v}+\beta^{2} v^{2}\right)
\end{aligned}
$$

but since \mathbf{u} and \mathbf{v} are orthogonal to each other, and $\left\|\mathbf{u}^{2}\right\|=\|\mathbf{v}\|$ this expression simplifies further to

$$
\ell^{2}=\left(\alpha^{2}+\beta^{2}\right) u^{2}
$$

Similarly, by substituting (3) in (2):

$$
a^{2}=\left[(1-\alpha)^{2}+\beta^{2}\right] u^{2} .
$$

Figure 2: Vibration states.

2 Vibration dampers

Blabla introduction, Newton said that

$$
\begin{equation*}
m \ddot{\mathbf{x}}=\mathbf{F} \sin (\omega t)+m \mathbf{g}-k \mathbf{x} . \tag{4}
\end{equation*}
$$

blabla ansatz in (4) gives

